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Statistics:


Goodness of Fit Tests

URL: http://mathbench.umd.edu/modules/prob-stat_chisquare_advanced/page01.htm
Note: All printer-friendly versions of the modules use an amazing new interactive technique called “cover up the answers”.  You know what to do…
Do those shoes fit?

In this module, we are going to discuss and explore a statistical test used for "goodness of fit". What does this mean? You know whether your shoes fit your feet based on whether they cause pain, right? 

In sort of the same way, you can decide whether your data fits your expectations using a "goodness of fit" test. And believe me, if your data doesn't fit, it can cause a lot of pain. 

Note: for the chi-square section of the module, having a calculator on hand will make things go faster. You can also use a spreadsheet or calculator software on your computer.

Dilbert’s 3 day work week

I want to start with some data and a model from outside of biology. The "data" (such as it is) comes from a Dilbert cartoon, and the competing hypotheses about the data come from Dilbert (the hard-working and long-suffering engineer) and his boss (the Evil Pointy-Haired Boss). We will work through 2 different methods that both show the same thing: Dilbert is right and the boss is wrong -- of course! 

In this cartoon, Dilbert's evil pointy-haired boss decides he's found a new way that employees are cheating him: they are taking fake "sick days" on Mondays and Fridays in order to get longer weekends. 

	What proportion of sick days 'should' fall on Monday or Friday (assuming there are no patterns to when people get sick, and no one is abusing their sickdays?)

· What proportion of workdays are a Monday or a Friday?

· If people get sick randomly, then they are equally likely to get sick on any day of the week. 

Answer: If people get sick randomly, then they are equally likely to get sick on any day of the week. Since 2/5 of workdays are either Monday or Friday, that makes 40%.


The day is saved … or not

Apparently we have saved the day. 40% of sickdays SHOULD fall on Monday or Friday, which means that employees are not abusing the system. 

But wait. What if next year, Evil Pointy-Haired Boss (EPHB) finds that 42% sickdays fell on Monday or Friday??? Proof positive, in his view, that employees are out to get him. 

Let's be Dilbert for a minute. How could we confirm or disprove Evil Pointy-Haired Boss (EPHB's) claim? Clearly 42% is more than 40% -- but how much is too much? Do the extra 2% just represent the natural "slop" around 40%? 

In fact there are (at least) two ways to do this: 

1. The Brute Force method: make up ("simulate") lots of data. This is conceptually not too hard, but it requires a lot of computation. 

2. The Statistical method: chi-square test. This is conceptually harder, but requires only basic arithmetic, a calculator, and a lookup table to implement. 
We'll try them both, and you can see which one you like better. 

The Brute Force method 

The brute force method to answering this question is to generate a whole lot of data. If we wanted to know if a coin was fair, we could flip it 1000 times and see how many heads came up, right?
This situation with sickdays is a little more complicated. We want to know how often a years worth of sickdays (let's say 100 sickdays in total for 10 employess) contain 42 or more Mondays and Fridays. So what we have to generate is a thousand years worth of sickdays. 

How do we do that? 
For a computer, its easy to generate 100 randomly chosen sick days. Here's an example:

	Here are 100 randomly chosen sick days.
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Number of Mondays/Fridays: 44



Computer = brute force 

Actually, the results of the 100 day trial vary quite a bit. Here are the first ten results that I got: 

	Trial #
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Mon/Fri
	43
	33
	37
	47
	40
	37
	39
	41
	41
	51


What have we accomplished so far? First, we made a hypothesis about what causes sickdays -- namely, they happen on randomly chosen days. The competing hypothesis, held by the pointy-haired boss, is that sickdays occur disproportionately on Mondays and Fridays.

Secondly, we calculated how many sickdays "should" fall on Mondays or Fridays according to our hypothesis -- that is, 40%, or 40 out of 100. This is the expected value of sickdays. But since we're dealing with a random process, we also expect some scatter around that expected value. The key question is, how much scatter?

Next we used a simulation of randomly chosen weekdays to investigate how much scatter to expect around the 40 out of 100 prediction.

	In the 10 trials, listed above, how common was it to get 42 or more Monday/Friday sickdays?

· Try counting how many trials had at least 42 Mon/Fri sickdays

· 3 out of 10 trials had at least 42 Mon/Fri sickdays -- what percentage is that? 

Answer: 3 out of 10 trials had at least 42 Mon/Fri sickdays, or 30%, which seems pretty common.


Time for a donut break!

What's your threshold for pain? 

If your shoes don't fit a little, they might cause a little pain, but not enough to pay attention to. But somewhere there's a threshold. If the shoe is too small, you go out and buy new ones. 

In the same way, saying that something is only 30% likely to occur according to the null hypothesis, is not enough pain to say that the data does not fit the model. But there is a threshold, called a p-value (p stands for "probability", not "pain"). In fact, most scientists use a 5% threshold. 

Usually when we talk about p-values, we're in the middle of doing some sort of statistics (like a t-test, a regression, or a chi-square test). But p-values work just as well for the brute-force simulation we're discussing here. The idea is, if the hypothesized process (in this case, random sickdays) produces the observed data less than 5% of the time, then the hypothesized process is probably NOT responsible for the data.

	How could the 5% threshold be applied to the sickdays problems? 

· 5% would mean 5 out of 100 trials...

· If NO MORE THAN 5% of trials had 42 or more sickdays, what would that mean? 

Answer: If NO MORE THAN 5% of trials had 42 or more mon/fri sickdays, that would mean that having 42 mon/fri sickdays was rare -- too rare to occur by our null hypothesis of random sick days. It would support the bosses' hypothesis.


This-is-not-a-stupid-question question:

If you were following that closely, you realize that in order to show that the data fits the model, you need to show that the hypothesized process produces the observed data MORE THAN 5% of the time. On the other hand, if you are familiar with t-tests or regression, you know that a "good" result is one in which your value is LESS THAN the p-value. 

The reason for this discrepancy is that with a t-test you are trying to DISPROVE the null hypothesis. In a goodness of fit test, you are trying to SUPPORT the null hypothesis. So:

	t-test
	goal: disprove the null hypothesis 
	want to go below the p-value 

	chi-square
	goal: show that the data fits the null hypothesis 
	want to exceed the p-value 


Let's ask the computer to do more...

For a person clicking on a button and writing down results, 10 or 20 trials is a lot. For a computer to run 10 or 20 trials and keep track of the results requires about a millisecond of processor time.

So let's ask the computer to do more. 100 trials? 1000 trials? Sure, no problem.  

	The online version of this module contains an interactive applet which allows you to simulate 1 year, 5 years and 100 years worth of sick days that fall on Monday and Friday. To find this applet go to: http://mathbench.umd.edu/modules/prob-stat_chisquare_advanced/page07.htm
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	Do the results in the applet support or reject Dilbert's hypothesis (that sickdays are random)?

· Look at your histogram -- does it appear that 42 sickdays 
happens in at least 5% of the trials?

· If you simulated 100 trials, then 5% means 5 trials. 
So if you count the 5 highest sickdays, you know where the actual 5% threshhold 
is (probably somewhere around 50+ Mon/Fri sickdays per year).

Answer: Most of the time when you run this applet, AT LEAST a third of the trials have 42 or more mon/fri sickdays, which makes it very common -- this supports the null hypothesis, which was that the data fit a random model.


A brief recap of the Brute Force Method 
	General Steps
	In the Dilbert example... 

	1. Decide on a null hypothesis -- a "model" that the data should fit 
	Dilbert's null hypothesis was that the sickdays were randomly distributed.

	2. Note your "expected" and "observed" values 
	Since 40% of weekdays fall on Monday or Friday, the same should be true of sickdays -- or 40 out of 100. The observed value was 42 out of 100. 

	3. Simulate lots of data 
	We simulated 100 trials with the applet. 

	4. Decide what your "threshold of pain" is (otherwise known as a p-value). *Note: technically this should come before simulating your data!
	We picked a threshold of 5%, or 5 out of 100 trials 

	5. Determine whether the agreement of the simulated data with the observed data falls within the threshhold -- if so, we say the model fits the data well. 
	Since the simulated data showed many more than 5% of trials with at least 42 mon/fri sickdays, we decide that the model (random sickdays) fits the data. 


The Brute Force method again. 

Evil Pointy-Haired Boss (who has nothing better to do than sit around flipping coins), challenges Dilbert to a game of heads-or-tails. In his first ten flips, the coin comes up heads every time but one. Boss claims to be just lucky, but Dilbert thinks he's playing with a loaded coin. Who is right? 
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General Steps
	Does the boss cheat?

	1. Decide on a null hypothesis -- a "model" that the data should fit 
	Boss says the coin is fair so the flips should be random, so let's test that. (You could choose the null hypothesis that the coin in loaded, but it would be hard to test because you don't know HOW loaded the coin is).

	2. Note your "expected" and "observed" values 
	The expected value is 5 flips out of 10, whereas the observed value was 9 flips out of 10.

	3. Simulate lots of data 
	Final answer: 6 out of 10,000 trials contained 9 or more heads (that's 0.06% of the time).

	4. Decide what your "threshold of pain" is (otherwise known as a p-value). *Note: technically this should come before simulating your data!
	5% is an uncontroversial choice.

	5. Determine whether the agreement of the simulated data with the observed data falls within the threshhold -- if so, we say the model fits the data well. 
	According to the simulations, 9 or more heads out of 10 was an extrememly uncommon outcome -- much less than 5% of the time. So the data does not fit the model.


Verdict: The boss cheats (but you knew that already, right?).

The problem with Brute Force… 

is that you either have to have a lot of patience or a degree in programming. Luckily, there is an easier way to test goodness of fit, at least for simple questions. 

What we want to do is test how far apart the "observed" and "expected" answers are, right? So a logical first step is to subtract one from the other -- that tells us how different they are. 
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	 observed (o)
	 expected (e)
	 difference (o - e) 

	Mon/Fri
	42 
	 40
	 

	Midweek
	58 
	 60
	 


Then we want to know how important this difference is. Is it big compared to what we expected, or small? To compare the size of two numbers, you need to find a ratio -- in other words, use division. You need to find out how big the difference is compared to the number you expected to get. So, divide the difference (between the observed and expected) by the expected value:

	  
	 observed 
	 expected 
	 difference (o-e) 
	relative deviation: (difference compared to expected ) 

	Mon/Fri
	42 
	40
	+2
	 

	Midweek
	58 
	60
	-2
	 


Big deviations would mean that we probably have the wrong explanation, whereas small deviations would probably mean we're on the center track. Since we're tying to show that sickdays are RANDOM, big deviations are bad for our case, while small deviations are good for our case.

One small correction

The method I showed you on the last page was not quite right. For reasons that are difficult to explain without a degree in statistics, you need to SQUARE the deviation before dividing by the expected value. So we have the following sequence: 
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Determine what you “expected” to see.
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Find out the difference between the observed and expected values (subtract) 
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Square those differences 
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Find out how big those squared differences are compared to what you expected (divide)
[image: image8.png]


Add it all up.
	





	If the final chi-square is a big number, would this make you think that the data fit the model, or don't fit the model? 

· A big chi-square probably means that the individual numbers you added were also big...

· The individual numbers you added were deviations from the model predictions.

Answer: Since the individual numbers you added were deviations from the model predictions, a big chi-square means the data deviate a lot. In other words, the model is a bad fit.


Give it a try 

Once again, recall that there were 42 mon/fri sickdays out of 100.

	
	observed (o) 
	expected (e) 
	(o-e)
	(o-e)2
	(o-e)2/e

	Mon/ Fri
	42
	40
	2
	4
	0.1

	Midweek
	58
	60
	-2
	4
	0.067

	Total
	100
	100
	 
	 
	0.167


Bottom of Form

So now you have a number which the chi-square statistic for this test, also called the " chi-square-calc", is 0.167. But what do you DO with it? You know that a big number is bad (because it means that the data deviate alot from the model) and a small number is good (because it means the data doesn't deviate). But how big is big, or how small is small? 

Before we answer that question, we need to take a brief detour to discuss degrees of freedom. After that, we can finally answer the question, are Dilbert's colleagues really out fishing on their long weekends?

One last thing: degrees of freedom

When doing a chi-square goodness of fit test, there is one last wrinkle to iron out, called degrees of freedom. 

When I told you that 42 out of 100 sick days were on Mondays or Fridays, you automatically knew that 58 had to be in the middle of the week, right? I was "free" to specify how many were on Monday/Friday, but then I was NOT "free" to decide how many were on non-Monday/Friday. So we say that, in this problem, there is only 1 degree of freedom. 
	Say you flip a coin 100 times. If we want to do a chi-square test to determine whether a coin is fair (lands equally on heads and tails), how many degrees of freedom would the test have?

· If I tell you the number of heads, do you also know the number of tails?

· How many variables are "free" to vary?

Answer: There are two variables here -- number of heads and number of tails. But only 1 is free to vary -- once I tell you how many heads there were, you know how many tails there were, or vice versa.



It is possible to do chi-square tests using more than 2 variables. For example, let's say I got data on how many sickdays fell on EACH of the five weekdays: 

	day
	observed
	expected

	mon
	22
	20

	tues
	19
	20

	wed
	19
	20

	thurs
	20
	20

	fri
	20
	20


We could do a chi-square test to check whether the distribution of sickdays matched our expectations for ALL FIVE weekdays 

	How many degrees of freedom would this test have?

· There are 5 weekdays -- how many of those am I "free" to specify data for?

· If I knew that there were 20 sickdays each on Monday through Thursday, is Friday still "free" to vary?

Answer: Once I know how many sickdays occurred on 4 of the 5 days, the fifth day is no longer "free" to vary. Therefore there are only 4 degrees of freedom.


  

The magic lookup table

Once you know the degrees of freedom (or df), you can use a chi square table, like the one on the right (books sometimes have a more complicated table which we'll talk about at the bottom of the page).

Although this table does come from a mathematical function (called a chi-square distribution, go figure!) for our purposes you can basically treat it like it appeared magically.

The first thing you need to know is the degrees of freedom in your test. As we talked about on the last page, this is the same as the number of rows in your table minus 1. So for a test with 1 df (degree of freedom), the "critical" value of the chi-square statistic is 3.84. 

What does critical value mean? 
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Basically, if the chi-square you calculated was bigger than the critical value in the table, then the data did not fit the model, which means you have to reject the null hypothesis.
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On the other hand, if the chi-square you calculated was smaller than the critical value, then the data did fit the model, you fail to reject the null hypothesis, and go out and party.* (*Assuming you don't want to reject the null. Which you usually don't.)
	Why do you think the chi-square-crit increases as the degrees of freedom increases?

· If you have, say, 15 degrees of freedom, how many rows are in your table?

· For every row in the table you need to calculate another deviation.

Answer: With a lot of degrees of freedom, you have a lot of rows in your table. Therefore you're adding more numbers together to get your final chi-square. So it makes sense that the critical value also increases.


Summary of chi-square: 

Here's a summary of the steps needed to do a chi-square goodness of fit test:

	General Steps
	In the Dilbert example... 

	1. Decide on a null hypothesis -- a "model" that the data should fit 
	Dilbert's null hypothesis was that the sickdays were randomly distributed.

	2. Note your "expected" and "observed" values 
	Since 40% of weekdays fall on Monday or Friday, the same should be true of sickdays -- or 40 out of 100. The observed value was 42 out of 100. 

	3. Simulate lots of data 
	We simulated 100 trials with the applet. 

	4. Decide what your "threshold of pain" is (otherwise known as a p-value). *Note: technically this should come before simulating your data!
	We picked a threshold of 5%, or 5 out of 100 trials 

	5. Determine whether the agreement of the simulated data with the observed data falls within the threshhold -- if so, we say the model fits the data well. 
	Since the simulated data showed many more than 5% of trials with at least 42 mon/fri sickdays, we decide that the model (random sickdays) fits the data. 


Another example for chi-square: 

Once again the Evil Pointy-Haired Boss has been accused of cheating at dice. In the last game, he had the following rolls:

	number on dice
	1 
	2 
	3 
	4 
	5 
	6 

	how many times 
	1 
	2 
	2 
	4 
	4 
	5 
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How likely is it that the dice are fixed? You can use the chi-square table below:

	
	observed (o) 
	expected (e) 
	(o-e)
	(o-e)2
	(o-e)2/e

	roll of 1
	
	
	
	
	

	roll of 2
	
	
	
	
	

	roll of 3
	
	
	
	
	

	roll of 4
	
	
	
	
	

	roll of 5
	
	
	
	
	

	roll of 6
	
	
	
	
	

	Total
	18
	18
	
	
	


Bottom of Form

Ok, so now take that calculated chi square value and compare it to the critical chi square on the table.

So, because your chi-square calc is less than your chi square crit, you fail to reject your null hypothesis -- and your verdict? Well, your verdict is that your boss does not cheat (at least when it comes to dice).

So, which method do you like better? 

Notice both methods require you decide on a null hypothesis, state your expectations and to state your threshold (how much uncertainty you will tolerate). Then both make some calculations and use the results to determine how probable it is that you have the correct explanation.
Applications 

Now that you (hopefully) understand how the chi-square test works, let's use it to do some biology. Here are 2 common applications - the mechanics are pretty much the same each time.

The first application is in the area of genetics -- it asks you to test whether the results of mating fit the expectations for a dihybrid cross.

The second application is in the area of ecology -- it asks you to test whether a certain family of birds has a preferred habitat.

At least two other applications of goodness of fit tests are also common in genetics -- namely, testing for linked gene crosses, and for Hardy-Weinberg equilibrium. 

However, we will put off considering these situations until you've actually had a chance to read about them in your textbook. But rest assured, chi-square will rear its, ahem, handsome head in later modules!

Example 1: Testing for a dihybrid ratio 

Recall that in a dihybrid cross, you expect a 9:3:3:1 ratio of phenotypes. We considered two (hypothetical!) genes in mice. T and t coded for normal teeth or vampire fangs, respectively, and F and f coded for smooth or fuzzy fur, respectively. 

But, as we discussed in that module, the process of generating new mice is random, so the ratio will not be exact. Now we have the tools to test whether an actual litter approximates the 9:3:3:1 ratio. 
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Mr. and Mrs. Mouse have 15 normal, 7 fanged, 6 fuzzy, and 2 fuzzy fanged babies. Does Mr. Mouse have any cause for jealousy?

	
	observed (o) 
	expected (e) 
	(o-e) 
	(o-e)2 
	(o-e)2/e 

	normal
	
	
	
	
	

	fanged 
	
	
	
	
	

	fuzzy
	
	
	
	
	

	fuzzy fanged 
	
	
	
	
	

	Total
	30
	30
	
	
	


Answers: df = 3; chi-square-calc = 0.577, which is not bigger than 7.81, so the data fit the model -- Mr. Mouse, you are likely to be the father of those kids!
Example 2: Habitat selection (ecology) 

You have just returned from a 3 year stint in the jungles western Africa, where you studied the habitat selected by the native bee eaters (a family of birds that specialize in catching bees and wasps on the wing, taking them to a perch, bashing their stingers out, and devouring them. In a pinch, they will eat other flying or hopping insects, such as grasshoppers). Three habitats were available to the bee eaters: 

	habitat
	Jungle
	Grassland
	Fields

	% of area 
	75%
	10%
	15%


Here's where you observed birds: 

	habitat
	Jungle
	Grassland
	Fields

	# of birds
	86
	3
	11


	Is there evidence that birds prefer jungle habitat over grassland or fields? 

· What should the rows be?: There are three types of habitat in which birds 
were observed. Each of these should be a row in the table. That also means 
you have 3-1 = 2 degrees of freedom for your test.

· What should the expected values be?: Your null hypothesis is that birds are 
distributed randomly -- so 75% should be in the jungle, etc. Since there were 
100 birds observed altogether, this makes 75 in the jungle, etc. 

· How do I interpret the calculated chi-square?: Since df=2, if your 
chi-square-calc is bigger than 5.99, then you have to reject the null hypothesis 
of random locations -- meaning that the birds prefer some habitats over others.

Answer: The null hypothesis is random distribution, so the expected values are 75, 10, and 15. Your chi-square-calc should be 121/75 + 49/10 + 16/15, which is approximately 7.5, which is definitely bigger than 5.99 (chi-square-crit for 2 df), so the birds do NOT fit the null hypothesis of random distribution -- they do prefer some habitats over others.


Review and Words of Wisdom

The following table compares the steps necessary for the two types of goodnes-of-fit models in this module. I changed the tables a little from those given earlier, to emphasize the similarities between the two tests. 
	Simulation
	Chi-square

	1. Decide on a null hypothesis -- a "model" that the data should fit 
	1. Decide on a null hypothesis -- a "model" that the data should fit 

	2. Decide on your p-value (usually 0.05).
	2. Decide on your p-value (usually 0.05).

	3. Note your "expected" and "observed" values 
	3. Note your "expected" and "observed" values 

	4. Simulate lots of data 
	4. Calculate the chi-square [add up (o-e)2 / e ]

	5. Determine whether the agreement of the simulated data with the observed data falls within the threshhold -- if so, we say the model fits the data well. 
	5. Look up the chi-square-crit based on your p-value and degrees of freedom (df=rows-1). Determine whether chi-square-calc < chi-square crit-- if so, we say the model fits the data well. 


The hardest steps are 1 (deciding on your null model) and 3 (figuring out what you "expected" to see based on the null model).

Usually your null model is that "chance alone" is responsible for any patterns in the observed data. (However, either approach can also handle much more complicated null models, which just makes things more fun... But we didn't discuss non-random null models in this module).

This step (#1) also encompasses setting up your chi-square table or your simulations. For the chi-square table, you need to think in terms of how many outcomes you have to test. Each of these becomes a row. Now you also know the degrees of freedom for your test, which is the number of rows minus 1.

Step #3, finding the expected values, often means doing some probability calculations, using the Laws of AND and OR. 

Once you know the expected values, filling out the rest of the chi-square table is just a matter of arithmetic.

Now simulating the data for the brute force method, that's another story...
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