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Population Dynamics:


Mutation and Equilibrium

URL: http://mathbench.umd.edu/modules/popn-dynamics_hardyweinberg/page01.htm
Note: All printer-friendly versions of the modules use an amazing new interactive technique called “cover up the answers”.  You know what to do…
Today on the Hardy-Weinberg Show: 

When there's a medical mystery, a conundrum, a puzzler, a what the heck is that, everyone knows who to call, the Medical Examiner. The ME has the knowledge, the experience, the tenacity, the gumption to get the job done. He also has the Assistant who does all the actual work. 
Episode 1: The Blue Hair Backstory

In today's episode, the Medical Examiner and his Assistant are confronted by a frightening cosmetological disorder: the Blue Hair syndrome. The Assistant tries several methods to accurately predict the percentage of people affected by this syndrome. 
Continued the Assistant, “recently, great progress has been made towards isolating the gene responsible for this syndrome. We know now that there is a single gene involved, with dominant and recessive alleles. Of course this implies 3 phenotypes: 
· BB: unaffected person, normal hair 
· Bb: carrier for blue hair syndrome 
· bb: blue hair sufferer ”
As a quick review, what is the probability that each couple below will have a child with blue hair?

	couple 1: Bb and Bb?
	0.25

	couple 2: BB and Bb?
	0

	couple 3: bb and Bb?
	0.5


Making Educated Guesses 

The assistant found research on Blue Hair Syndrome indicating that the proportion of recessive (blue hair) alleles in the population is 0.3, or 30%.” 

“Keen,” said the ME. “Now can you determine what proportion of the population carries the blue hair gene, and what proportion can be expected to suffer from the disease itself?” 

Here is a way to visualize the alleles. Let's assume we have 10 people, and 30% of the alleles are of the recessive variety (b, for blue hair): 

	Assuming 30% b allele:

	10 people
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	20 alleles
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	14 B (dominant)

	
	
	
	
	6 b (recessive)


At this point I urge you to go out and buy a bag of m&m's and work out the answers to the problems below before you click on the buttons. (1 blue m&m = 1 blue allele, 1 brown m&m = 1 brown allele). Or you could use pennies and dimes, or write lists on a piece of paper. Think about how these 14 B and 6 b alleles could be paired off to answer the following questions.... 

	What is the largest number of Blue haired people you could have?
	3 bb (+ 7 BB)

	What is the smallest number of Blue haired people you could have?
	0 bb (+ 6 Bb + 4 BB)

	What is the largest number of Blue carriers you could have?
	6 Bb (+ 4 BB)

	What is the smallest number of Blue carriers you could have?
	0 Bb (+ 3 bb + 7 BB)

	What is the largest number of homozygous Brown haired people you could have?
	7 BB (+ 3 bb)

	What is the smallest number of homozygous Brown haired people you could have?
	4 BB (+ 6 Bb)


Simulating the Genotypes 

At the Assistant's the next meeting with the ME, he presented his findings: between 0 and 30% of people will have Bluehair, between 0 and 60% will be carriers, and between 40 and 70% will be unaffected. 

The ME's narrowed-eye stare was hair raising. “I was expecting a more exact answer! “ he snapped, “and all you can give me are probabilities? You're going to have to do better than this. 

Dump out the m&m's again, just in case you, um, missed anything. This time, try taking a handful of m&m's, 6 blue and 14 brown. Mix them up in a cup, then draw them out in pairs. How many of each kind of pair do you get? 

In case you don't have enough m&m's (anymore?), here is an applet that does the same thing, only we use 200 digital m&m's, instead of 20 real ones. In addition, the applet shows you how the results differ from the predicted maximum and minimum for each type. 

The 200 alleles sort out like this (one possibility)

:

	
	Min possible
	Actual 
	Max possible

	brown-hair (homozygote)
	40
	44
	70

	carrier (heterozygote)
	0
	45
	60

	blue-hair (homozygote)
	0
	11
	30


Random Mating is the Key 

Armed with these new results, the assistant headed back to the ME. “According to my results, approximately 50% of the population should be unaffected by the blue hair syndrome, 40% should be silent carriers…” 

and 10% should actually be born with blue hair.” 

“So you claim that these alleles are ‘assorting independently', do you! And that a new ‘person' is formed by two RANDOMLY chosen alleles coming together!” 

The assisstant took a step back, “Yes…” 

“Isn't it possible, my fine young assistant, that people with blue hair would be more attracted to other people with blue hair?” 

“So, if you know what proportion of the m&ms are Blue, shouldn't you be able to predict, EXACTLY, what proportion of the offspring will have Blue hair and what proportion will be silent carriers?” 

It is crucial to notice that there are TWO DIFFERENT distributions that we're interested in:

1. allelic distribution, which is 70/30. These proportions are so important we call then p (proportion of the dominant allele) and q (proportion of the recessive allele). 

2. genotypic distribution, which we're still trying to figure out, but we just simulated as approximately 50/40/10. 

You create a bridge from the allelic distribution to the genotypic distribution by assuming random mating: 

When you chose two m&m's randomly out of a cup, this is essentially the same thing as randomly 'mating' the m&m's. The process is also called 'random assortment', and it is a cornerstone of the Hardy-Weinberg Equilibrium (which we are working our way up to, I promise you!) 

The assumption of random mating allows you to calculate EXACT probabilities for each of the three possible genotypes (BB, Bb, bb, in this case), using the laws of AND and OR. This is of course more useful than just calculating the minimum and maximum possible for each genotype, and more convenient than simulating hundreds of offspring.

However, as you just saw, in small populations (such as 100 individuals), the actual proportions of the three genotypes vary quite a bit, due to random chance. In fact, the EXACT probabilities will not necessarily be achieved even for very big populations. But, if you look at very large populations, the actual probabilities should be pretty close to the predicted probabilities. 

Using the laws of AND and OR

Before we start, make sure you are clear on why the line of reasoning below works. Random mating means that each parent will contribute genetic material (to its offspring) which is representative of the entire pool of alleles. Since we know that 30% of the population's alleles are for blue hair, this means that out of a large population of Moms, on average 30% will give their kids a blue allele. So will 30% of Dads. And so on. 

This would NOT work if the gene was sex-linked, or if reproducers sought out mates that were similar to themselves (or different from themselves, for that matter). The ONLY reason we can continue with the calculations below is because we're assuming that the alleles an offspring inherit are in fact random and therefore represent the allele pool. 
	What is the probability that an offspring gets 2 blue alleles?
	0.3 * 0.3 = 0.09

	Or both brown, that should be easy…  
	0.7 * 0.7 = 0.49

	As for the silent carrier, that happens if one parent donates a blue allele and one donates a brown allele... 
	(0.7 * 0.3) + (0.7 *0.3) = 0.42  


The Assistant returned triumphantly, “Exactly (on average) 49% should be unaffected, 42% carriers, and 9% blue.”
The ME gave a nasty smirk and held up an official looking report. “Oh, but according to the latest-latest research, only 22% of the allele pool actually codes for the blue-hair trait. How does that change your predictions?” 

“OK, give me a minute to write some probability equations. Can I use that for scrap paper? ” muttered the Assistant. 

“You might want to look up the Hardy Weinberg Equilibrium.”
A word from our sponsors 

The topic of the day is … equilibrium.... 

Lots of biological processes go to an equilibrium. That means there might be a certain amount of change for a period of time, but then things stabilize. Often, the equilibrium can be described in mathematical terms. That's what we're going to do here. 

Before we get to the Hardy-Weinberg Law, we need to discuss the concept of equilibrium. Equilibrium literally means “equal weights” or “equal scales”. So if you put two equally heavy objects onto an old-fashioned scale, they balance each other. Each gets pulled down equally by gravity, and the end result is that the scale, once it gets to equilibrium, will not move anymore. 

Equilibrium is an important concept all over biology. Any process that goes on long enough for us to observe it is probably in some kind of equilibrium, at least in the short term. Our bodies (and those of other living things) in particular are adapted to produce equilibrium situations. 

Some processes result in an equilibrium being reached very rapidly, and in other cases it takes a long time to get to equilibrium. In this module we'll discuss one process (random mating) that leads very rapidly to equilibrium. Later we'll get to another process that leads quite slowly to equilibrium.

Episode 2 on the HW: Hardy and Weinberg to the Rescue! 

We have already introduced the notation of p (the proportion of dominant alleles in the population, in this case the brown-hair-allele) and q (the proportion of recessive alleles in the population, in this case the blue-hair-allele).

In this episode, the Assistant finds p and q to be a useful shorthand, allowing him to provide quick answers and avoid the ire of his supervisor.

However, the supervisor quickly finds fault again, forcing the Assistant to defend his conclusions using statistical tests.

Convinced at last, the ME asks his assistant to find out what other useful information is hiding in the math of Hardy-Weinberg.

Exact probabilities

The Assistant soon had the answer his supervisor was waiting for. His reasoning went something like this... 
For a given, single locus: 

· let p be the proportion of dominant alleles (brown hair) in the gene pool 

· let q be the proportion of recessive alleles (blue hair) in the gene pool 

Using p and q, we can formalize the calculations you made a few pages ago. Remember the laws of AND and OR? Here are the same formulas, but when you roll the mouse over the graphics, you'll see the notation with p and q instead of numbers.

	First, what is the probability that an offspring gets 2 blue alleles?
	P (Mom donates blue) * P (Dad  donates blue) =    q * q = q2

	And the probability that the offspring will be all-brown (no blue allele)?
	P (Mom donates brown) * P (Dad donates brown)= p * p = p2

	And finally, the probability that the offspring will be a blue carrier?
	[P (Mom donates brown) * P (Dad donates blue)] + [P (Mom donates blue) * P (Dad donates brown)] = (p * q) + (q * p) = 2pq


So to summarize, assuming that random mating occurs:

· the proportion of homozygous dominant genotypes = p*p = p2 

· the proportion of heterogeneous genotype (carriers) = p*q + q*p = 2pq
· the proportion of homozygous recessive genotypes = q*q = q2. 

Using p and q, I can avoid all the gobbledy-gook about probability. I just need to remember p2 for the dominant genotype, 2pq for the carriers, and q2 for the recessive type. Pretty simple. I bet if I tried, I could even forget where it came from..."

But first, the Assistant shot off a triumphant email to the ME:
Fill in the blanks (you may need a calculator)

Sir: if 22% of the allele pool is the recessive gene 
(In other words, p = [image: image3.wmf]

and q = [image: image4.wmf]

), then, with 2 decimal places,

· [image: image5.wmf]

% of the population would be expected to be carriers, and

· [image: image6.wmf]

% would be expected to have blue hair. 

In other words, rounded to no decimal places, I predict the following distribution:
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p.s., Did you know Google can be used as a calculator? Just type your equation with a equals sign, 
i.e., .22 * .22 =, in the search box. 

Answers: 0.78, 0.22, 34.32, 4.84, 61, 34, 5 

Picking a good statistical test

The next morning, the ME called the Assistant into his office. 

“Some very expensive genetic tests on 200 people have shown that the proportions of unaffected, carrier, blue phenotypes are 62%, 36%, and 2%, whereas you just predicted 61%, 34%, and 5%. Care to explain yourself?” 

What kind of test could the Assistant use to show that the study's distribution of genotypes (62:36:2) does, in fact, fit his model (61:34:5), and that the difference is just due to random 'slop'? 

	t-test
	no...a t-test is used to see if the means of two sets of data are different 
for example, is the average age of blue-haired people different from the average age of brown-haired people?

	Regression
	no...a regression is used to see if two variables are related 
for example, is there a correlation between amount of hair and their age?)

	Chi-square
	Yes! a chi square can be used to test if an observed distribution fits (is similar to) the predicted distribution!
Here, we want to know ... Is 47%:42%:9% pretty much the same as 51%:38%:7%?

	Analysis of variance
	no...an ANOVA is used to see if the differences AMONG several groups is greater than the differences WITHIN each group
You probably won't get into this unless you go on to study biology or experimental ag or something similar at a graduate level


Using a chi-square to test for H-W genotypic frequencies 

Now may be a good time to review the chi-square test if you need to (see the Goodness of Fit module). The table below will help you keep track of the calculations required. 
Remember, you're trying to show that the study's distribution of genotypes (62:36:2) does, in fact, fit the Hardy-Weinberg model (61:34:5).
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Group
	Observed (o)
	Expected (e)
	o-e
	(o-e)2
	(o-e)2/e

	Homozygous Brown
	62
	61
	1
	1
	0.02

	Carriers
	36
	34
	2
	4
	0.12

	Homozygous Blue
	2
	5
	-3
	9
	1.80

	Total
	100
	100
	
	
	1.94


	New!! Breaking News!! How many degrees of freedom does the test have? NORMALLY, the degrees of freedom in a chi-square test are equal to the number of observations minus 1. (Essentially, if I know total number of observations and how many are in all but 1 group, I can guess how many observations were in the last group, so that group has no 'freedom'). HOWEVER, this is not true for testing the Hardy-Weinberg equilibrium. INSTEAD, you have to think about how many quantities are really free to vary --> remember that we used the population to estimate p and q, then we used p and q to get p2, 2pq, and q2. So really, once we decided on a value for p, everything else was decided for us. Whatever p was, q had to be 1-p, and p2, 2pq, and q2 were set as well. SO, the moral of the story is, since only p is able to vary, there is ONLY ONE degree of freedom in this chi-square test.* Whew!


Given that df = 1, and based on the lookup table to the right, do the observed proportions fit the Assistant's predictions?
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	Really Gory Details That You Don't Need to Know But I'm Including for the Sake of Completeness: If you are doing a chi-square test of Hardy-Weinberg proportions for multiple genes (for example, hair color AND earlobe attachment), there is a general rule for the degrees of freedom, which is:

df = # genotypic combinations - # alleles.

So for 2 genes, there are 9 genotypic combinations (3 genotypes for hair color x 3 genotypes for ear attachment) and 4 associated alleles (2 each for hair color and ear attachment), so df = 9 - 4 = 5.


The HW graph 

A graph is a good way to summarize a lot of information. Rather than calculate the proportions of brown/carrier/blue-haired people for lots of different values of p and q, we can just make a graph and see the relationships at a glance. 

When making this graph, want to know how the allelic frequencies affect the genotypic frequencies. So we'll put allelic frequency on the x-axis, and genotypic frequency on the y-axis, like so: 

But how exactly can we put "allelic frequency" on the x-axis, given that there are two different frequencies (p and q)? Basically we just need to agree on one of them. Since p is the proportion of the dominant allele, so we'll choose that one. (We could choose q, just to be different, but then the graph wouldn't look like the one in the textbook).

Likewise there are three genotypic frequencies to put on the y-axis, but this is not so bad, because we can just make three lines. 

It should be easy to plot p2. However, how do we plot q2? The crucial thing to remember is that there is a necessary relationship between p and q -- they must add up to 1. So, it must be true that q = 1-p. Instead of plotting q2, we need to plot (1-p)2. 
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Likewise, to plot 2pq, we need to plot 2p (1-p).

	#Brown Haired
	#Carriers
	#Blue Haired

	p2
	2pq
	q2

	p2
	2p(1-p)
	(1-p)2


What stories a graph can tell. 

“In fact, even if you could find a legal way to get all the blue-haired people to segregate themselves, as soon as that restriction was taken away and people began pairing off reasonably randomly, the equilibrium proportions would return within ONE SINGLE GENERATION." 

“How can that be?” 

“Because every generation of random mating is like taking ALL the alleles and throwing them in a blender. They all get paired up randomly – and that means the equilibrium proportions are right back again, like magic. Like pulling a rabbit out of a hat. 

“You mean like pulling a random hare out of a hat.” 

“Well, yes,” the Assistant admitted. “It all depends on random assortative mating…” 

“Kinky,” said the OA. 

The Assistant rolled his eyes. “It just means that love is blind … to hair color anyway. It would mean that people with blue hair are not biased towards other people with blue hair -- or against them either.” 

“But love isn't blind. Tall people marry tall people, for example.” 

“True, but I didn't say love had to be completely blind. Just blind to that particular trait, hair color.”  

Proportions of heterozygotes 

	Looking at the graph below, what is the range of possible proportions for carriers in a randomly mating population?

· What is the highest level of heterozygotes possible under H-W equilibrium 

· Is it possible that ALL members of a population are heterozygotic? 

Answer: 0-50% 


	Looking at the graph above, under what conditions are carriers most common?

· Under what conditions is the line for carriers above the lines for homozygotes? 

Answer: p = .33 to .66 


When are carriers most common? 

Finding q 

“Get down to the Swedish Hospital and Hair Academy ,” roared the ME. "It seems that blue-hair syndrome has appeared there as well. A full 40% of the patient population has blue hair. The Academy would like to determine what the actual prevalence of the gene is, and how common carriers are.” 

Just by observing a population, you can't tell how many carriers there are, but you can tell how common the homozygous recessives are (in this case, blue-haired people). 

So, is it possible to determine the actual prevalence of an allele (i.e., the value of p) if you only know the how many recessive phenotypes are out there? (This being a math module, obviously the answer is yes...)

	One way to do this would be to look at the graph we made before. If 40% of the population has blue hair, then approximately what is q?
	
[image: image12.png]





	What is q, assuming that 40% of the population shows the recessive trait? 

· What proportion of the population exhibits the recessive trait, in terms of p and q? 

· Since q2 is the proportion of the population exhibits the recessive trait, and q2 = 40%, what mathematical operation would allow you to find q? 

· ...If you get a number that's much too small... : You need to express 40% as a number between 0 and 1 (a proportion).
The problem is that percentages are really fractions, so taking a square root is not simple -- you can tell that the answer is wrong if q is way too low, like 6%. 

I think I have the answer: Square root(.40) = 0.63 


	How common are carriers, assuming that 40% of the population shows the recessive trait? 

· You already found q in the last problem (0.63).

· If you know q, you can also find p... 

I think I have the answer: 2*0.37*0.63 = 0.47, or 47% 


Episode 3 : Revenge of the Mutants

"That's very strange," mumbled the Assistant apprehensively. "I did the algebra, it has to come out that way! The Hardy-Weinberg law clearly states that the proportions of blue-hair and brown-hair alleles should stay constant over time!"

"Unless the Hardy-Weinberg Law doesn't apply here..."

"How is that possible?" sputtered the Assistant. I thought Hardy-Weinberg was a universal law. 
A common error. In fact you could call it the Hardly-Ever Law, because the assumptions of the Law are hardly ever satisfied. 

"OK, you want me to lay it out for you? Mutation. Migration. Natural Selection. Even pure chance, if your population is small enough. Any of them cause changes in allelic frequencies -- the proportions of brown vs. blue alleles. All of them invalidate the Hardy-Weinberg Law. 
In this episode, the Assistant meets his match. They discuss what happens when the assumptions of the Hardy-Weinberg "Law" are broken, which happens frequently. They delve into the subject of mutation -- and discover new forms of equilibrium. 

And a word from our sponsors 

The topic of the day is equilibrium ... dynamic equilibrium. 

Equilibrium means stability. Dynamic, on the other hand, implies movement. Explosive movement, in the case of the related word “dynamite”. 

So when you put them together, what do you get? How can something(s) be moving and not moving at the same time? This is not actually one of those Zen riddles. Actually the world around us is full of dynamic equilibrium: 

· I exercise and I eat, so my weight doesn’t change

· I argue and my opponent argues back, so no one changes their mind

· Some people move to the city and other people move to the countryside, so both have the same population as before

The Hardy-Weinberg Law predicts equilibrium for both allelic and genotypic frequencies. However, this equilibrium is not DYNAMIC, because it is not produced by dynamic processes acting in opposition to each other. In the final episode of this module, however, we will discuss how the allelic equilibrium really is dynamic, and happens much more slowly than the Hardy-Weinberg genotypic equilibrium. Stay tuned... 

How to violate an assumption... 

	Does it violate H-W assumptions?

	Cosmic rays induce mutations in the blue-haired allele. Violation -- mutations violate the H-W assumptions.
	[image: image13.wmf]yes [image: image14.wmf]no

	Blue-haired people only marrying other blue-haired people (and having kids). Violation -- this constitutes non-random mating.
	[image: image15.wmf]yes [image: image16.wmf]no

	Population approaching zero growth. No violation-- population growth or lack of growth is not one of the H-W assumptions.
	[image: image17.wmf]yes [image: image18.wmf]no

	Lower reproduction of blue-haired people compared to brown-haired. Violation -- differential reproduction is a hallmark of natural selection.
	[image: image19.wmf]yes [image: image20.wmf]no

	Population restricted to a single apartment building. Violation -- an apartment building is a small population, so chance effects can be magnified.
	[image: image21.wmf]yes [image: image22.wmf]no

	Population growing very rapidly. No violation -- H-W doesn't care if the population is growing.
	[image: image23.wmf]yes [image: image24.wmf]no

	Immigration of Blue-haired carriers from Lithuania. Violation -- migration invalidates H-W conditions.
	[image: image25.wmf]yes [image: image26.wmf]no


Answers: yes, yes, no, yes, yes, no, yes
Mutation Rates 

"Extensive genetic studies have shown that, every generation, 10% of the brown-haired alleles mutate to the blue-haired form."

[image: image30.png]


So, let's say we start with a population that has 400 brown alleles and 100 blue alleles. How many blue alleles would that be in the next generation?"

The Nurse rolled her eyes. "Well, 10% of 400 brown alleles change to blue, so that adds 40 new blue alleles to the 100 you already had."

"Grand Total 140!" interjected the Assistant.

"Yes, well, as I was saying, that leaves out reproduction."

[image: image31.png]


"Good, let's leave out reproduction. We know that reproduction doesn't affect the Hardy-Weinberg equilibrium, and my head hurts already. What I'm wondering, if you started with 250 blue and 250 brown alleles, only 25 alleles would mutate instead of 40, right? So does that mean that the rate of mutation changes?"

"No it doesn't mean that the rate changes. The rate is still 10%. But the number of mutations changes -- more mutants when there's more raw material to mutate. There's a difference between the rate of mutation and the actual number mutating, you know."

Simulating Forward and Backward Mutation 

For a few minutes the Assistant was silent, scribbling equations and graphs on the back of a medical chart. Suddenly he looked up with a horrified expression. "I just had a thought!"

If brown alleles can mutate to blue, why couldn't blue mutate to brown?"

"I thought you'd never ask."

"So if you start with 400 brown alleles and 100 blue alleles, and 10% mutation rate... hmm, let me just think about the brown alleles. 40 would get lost to blue mutants. But 10 blues would also mutate to brown. So at the end you would have 400 - 40 + 10."

[image: image32.png]


"Yup, 370. Of course, for blues you would have 100 - 10 + 40, or 130.''

"But would browns and blues necessarily mutate at the same rate?"

"And why should they? Lots of processes are easier one direction than the other. Its easier to cook an egg than to uncook it. Its easier to untie your shoe than to tie it. Of course forward and backward mutations can have different rates."

"OK, I guess you're right. So, has your institute done even more extensive testing to find this backward mutation rate?"

"Of course," smirked the Nurse. "In fact, the backwards mutation rate was measured at 20%."

The Equilibrium does not Depend on Where you Started 

"OK, then, think about this," the Nurse barrelled on relentlessly, "we know that the forward and backward mutation rates for this particular allele pair are 10% and 20%. Will we always get the same equilibrium amounts of the two alleles?" 

“When you started with a population that was 400/100 for brown/blue alleles, and you got an equilibrium of 333/167. What if you started with 250/250? Or 100/400? Would the equilibrium still be 333/167?"

Here are the Nurse's notes: 
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What do you think? Do all three populations tend toward the same equilibrium?

The HW Genotypic Equilibrium Still Holds 

“How soon before we hit equilibrium?” 

“Well, sir, we don't really 'hit' allelic equilibrium. It's more like a gradual approach. But I can tell you what the population will look like at equilibrium -- what the distribution of genotypes will be. ” 

No matter what allelic frequencies we started with, the equilibrium frequencies (after 10 or so generations) was 333:167. In other words, 

p = 2/3 and q = 1/3
So contrary to the first Hardy-Weinberg predictions, the allelic frequencies (p and q) have changed. 

But the second part of the Hardy-Weinberg predictions (the genotypic frequencies) depends only on random mating. And we're assuming that mating is still random. 

Therefore: 

% brown (homozygous) = p*p = 4/9 = 44.45%

% carries = 2pq = 4/9 = 44.45%

% blue haired = q*q = 1/9 = 11.1%

Best of the Hardy-Weinberg Show
Do equilibrium and rates of change matter for subjects other than genetics? 

Yes, absolutely! Mutation is an example of a linear change process. The number of changes is directly proportional to the amount of raw material. These same relationships are true of all linear rates of change – for example, birth or death rates in ecology, or amount of products and reactants in a chemical equation. Linear models are the simplest models, although often we also use more complicated models. 

Remember that equilibrium does not mean that no change is taking place! The number of mutations taking place can be quite high, and yet if they balance each other out, there is still a dynamic equilibrium. In other words, the frequencies of different alleles change the fastest when the number of forward and backward mutations is the most UNBALANCED. This tends to be true when we are farthest from equilibrium. 

Also, remember that the RATE of forward and backward change does not need to be equal in order to have equilibrium. Rather, the NUMBER of forward and backward changes must balance out. 

How is the mutation-equilibrium different from the Hardy-Weinberg equilibrium?

Remember that the Hardy-Weinberg 'Law' makes two predictions: 

1. allelic equilibrium: p and q will not change, and 

2. genotypic equilibrium: the proportions of genotypes will conform to p2/2pq/q2. 

Under mutation, the allelic frequencies do change, approaching a new equilibrium gradually. In the long run, the starting conditions don't matter -- the same equilibrium is obtained no matter where you start. 

But just because a population is undergoing mutation does not mean that it is not mating randomly. Therefore, the H-W GENOTYPIC frequencies should still occur. Remember that the genotypic equilibrium occurs in a single generation! That is, genotypic equilibrium is a FAST process, while allelic equilibrium under mutation is a SLOW process. 

So if you are asked to "show that a given population is in Hardy-Weinberg equilibrium", it is NOT enough to show that the genotypic ratios conform to p2/2pq/q2! All populations which are reasonably large and mate randomly will conform to p2/2pq/q2, because genotypic equilibrium is such a fast process. Instead, in order to show that a population is in Hardy-Weinberg equilibrium, you need to show that p and q are not changing over at least one generation. 

What were those assumptions again?

Here they are:

1. the population is reasonably large
2. the alleles assort randomly (random mating)

3. there is no mutation (this would change p and q)

4. there is no migration (this would also change p and q)

5. there is no differential reproduction / natural selection (this would also change p and q)

Notice the last 3 are all processes that change p and q. Mutation, because if the alleles mutate their frequencies can change. Migration, because if the migrant pool if different from the population, then p and q will change. And natural selection, which would favor one of the alleles over the other.

Meeting all five of these conditions exactly is pretty hard. BUT, natural populations are often ALMOST in Hardy-Weinberg equilibrium. For example, mutation might be almost zero, and migration very similar to the current allelic frequencies.

Also, the Hardy-Weinberg equilibrium gives us a "normal" expectation (sometimes called a "null" expectation) of what the genotypic frequency in a population should look like -- so if the population does not resemble this equilibrium, we know that something else is going on.  
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