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The Power Function 

Scaling studies examine how form and function change as organisms get larger - in other words, how do biological features scale across size? Do they change in meaningful ways as organisms get bigger or smaller? Of course, you can't even ask these types of questions without having a way of measuring how relationships change mathematically. So, our main goal in this section is to introduce you to the idea of scaling studies - and also the mathematical function used to measure them: the power function!
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What are scaling relationships? 

How do organisms change as body size increases or decreases? This is the fundamental question behind studies that measure scaling. Most scaling studies have focused on how physical structures (such as body shape) or physiological factors (such as metabolism or heart rate) changes with size. There are lots of types of factors that could be examined in relation to size. Here are a few: 

[image: image2.png]Weanr o Ter

enconcenance
o
Tooe

i
Ceeen




Why study these relationships? Well, if you understand how form or functions change as organisms get bigger or smaller, it is possible to learn something fundamental about what underlies the processes or learn about what factors place evolutionary limits on organismal growth and adaptations. For instance, determining at what size arthropods can no longer support the weight of their exoskeleton gives us clues about the limits of their growth. 

Scaling studies have a long history in biology, but the physiological relationship that has received the most attention is how metabolic rate changes as organisms get larger. Therefore, we are going to focus on that example as we go through some of the mathematical concepts that underlie the science of scaling. So, what do we really mean by scaling? Let's use a concrete example so you'll know what we mean.

Here is some data on body size and metabolic rate for mammals. Later, we're going to show you an expanded data set of over 600 mammals so we can examine this relationship more rigorously, but for right now, we'll start with just four:
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OK, a couple of things that we want you to notice. The first is that metabolic rate increases as animals get bigger. That's because we are specifically interested in total energy consumed (here measured through oxygen consumption). Of course, bigger animals will use more oxygen than smaller ones (think about how big a breath a lion takes compared to a mouse). But look at the values adjusted for body size (the last value listed for each species). Mice use a lot more oxygen per gram than a lion. This means that lions use oxygen more efficiently than mice. There is something else to notice. As mammals get bigger, this increase in efficiency is not linear (notice how the steepness of the slope decreases as size increases). This means that metabolism does not scale linearly with body size.

Right now, you may be thinking to yourself: "Who cares?" Well, it turns out that how metabolism (and other factors) scales with body size can give important information about which factors are most important in limiting these biological functions. If we can understand that, we understand a lot more about biology! All right, now that you're convinced of the importance of these studies - let's look at these relationships in more depth by seeing how people model them mathematically!

The Power Function 

What equation could we use to describe these scaling relationships mathematically? Well, a linear relationship won't work for these data (remember from the last page that the relationship wasn't linear). So we can't use the equation Y = mX + b (the equation for a straight line). That's too bad, because that equation is SOOOO easy to work with. 

No, we need an equation that can show us all kinds of scaling relationships. Ones where the process rates could increase with size, scale linearly, or allow a decrease in rate (as in the last example). This means that we want a function that is flexible enough to capture all these potentially biologically interesting behaviors. Well, it turns out that although there are many functions that can do this, the most common function that is used in scaling studies is the power function:


Y = aXb
There are several good reasons to use this function, and we're going to spend a little bit of time examining its properties. By the time we're done, you'll see why its so commonly used, and you will come to love it as much as we do! 

This function is a general equation and could apply to any situation. X and Y are both variables, meaning they take on a range of values. As is usually the case, Y is the dependent variable and X is the independent variable, meaning that the value of Y is dependent on the value of X. We used Y and X to make life simple, because when we are ready to graph this function (and we will ALWAYS want to graph the function), the dependent variable (Y) goes on (where else?) the Y-axis. That leaves the independent variable (X) to go on the X-axis. Finally, something in mathematics that makes sense!

X and Y could represent anything, although for most scaling studies, X is generally related to size and we are specifically interested in how metabolic rate scales with size, so lets rewrite the general equation Y = aXb in a more specific way to fit our main example:


Metabolic Rate = a * (size)b
Now we want to think a little bit about how this function behaves. Luckily, we already know something about size and metabolic rate, right? They are both always going to be positive, non-zero values (you've surely never heard of anything with a negative body size - and if your metabolic rate is 0, unfortunately that means you're dead!). That information should help us think about these functions. 

Next, we'll examine how "a" and "b" influence the way the two quantities are related to each other.

The Parameters of the Power Function 

So, what roles do "a" and "b" play in this equation? 


Metabolic Rate = a*(size)b
Remember, in this function, metabolic rate and size are variables, meaning that they take on a range of values (which is why they are illustrated on the axes of a graph). On the other hand, "a" and "b" are parameters - and in any given situation, they are constants. For example, say you write a dissertation on the relationship between size and metabolic rate in ewoks. You might find the following relationship: For instance, you might find out that the metabolic rate of ewoks is related to their size by the following equation:


Metabolic rate of ewok = 3.69*(size of ewok)0.98
Notice that "a" and "b" have been replaced with the actual numbers that specify the relationship. In this case, through our intensive study of ewoks, we figured out the relationship between their weight and their metabolic rate, and so now we know the fixed values of those two parameters. If we studied another group of organisms (say, wookies), we would likely find that the parameters were different. For instance, we may find that this relationship turns out to be:


Metabolic rate of wookie = 3.46*(size of wookie)0.95
We may hypothesize that the numbers are so similar because it appears that wookies and ewoks may be closely related.

Now lets think about what range of values "a" and "b" could take on generally, and how different values will change the behavior or shape of our function.

We already know that size is always going to be a non-zero, positive number. And we also know that "a" and "b" can only take on values that result in the metabolic rate also being a non-zero, positive number. Keeping that in mind, lets first think about the value of the parameter "a".

The conversion factor "a" 

What does the "a" do in our equation


Metabolic rate = a * (size)b
First, lets think about a simpler version of our equation (when b=1):


Metabolic rate = a* size1 = a*size

Well, first off you may notice that you have an equation that says that metabolic rate equals size. That is an odd concept right there! Well, it turns out that one of the functions of "a" is to convert size into values that are appropriate for metabolic rate. That's why we refer to it as a "conversion factor". So if size is measured in grams or kilograms and metabolic rate is measured in calories consumed per hour or kilocalories consumed per minute - its not going to matter because "a" is going to convert the values and units in a way that makes sense. Later, you will see that the value of "a" is also going to be related to the shape of the organism.

Another thing to notice about the equation is that when presented in the above simplified version (metabolic rate = a* size), this is really like a simplified version of a line (like Y=mx). In this case, "a" is the parameter that specifies slope - and on a normal axis, slope will affect the steepness of the relationship, but the fact that it is linear means that the relationship scales consistently across all sizes. Therefore, "a" (in this equation) does not specify the scaling relationship (because we are interested in how the relationship changes across sizes!). Do you remember our graph of the four mammals and how the line got less steep at larger sizes? The fact that it got less steep with size could therefore not have been affected by parameter "a". That, it turns out, is the role for parameter "b". 

So, "a" is not very informative about the kine of scaling questions we are asking, but it is still worth noting that there are some limits on the range of values that "a" could possibly take. What limits? Well, remember that we know that size is a positive, non-zero number and that metabolic rate must also be a positive, non-zero number. That means that "a" is not going to be equal to 0 or less than 0. Why? If "a" were 0, then metabolic rate is always 0 and we know metabolic rate is never 0! And if "a" were less than 0, then metabolic rate would be negative, and that doesn't make any sense.

So, what values above zero could "a" realistically take on? Because their are so many ways that these relationships could be measured (cal, kcal, gram, kg, etc., etc., etc.) its hard to predict the value that "a" may take (other than being greater than 0), and since it doesn't really mean anything biological anyway, we really aren't going to pay that much attention to this value for the rest of this module (sorry about that, little "a"). Luckily, it turns out that "b" is a much more interesting value - and the one we really care about. We are going to spend A LOT of time thinking about the value of that little "b".

The Power in the Power Function

So all the power in power functions comes from that little "b". Lets explore what values b can take on and how it changes the shape of the function. To do that, lets again consider a simplified version of our equation (this time, "a" is equal to 1):


Metabolic Rate = 1*sizeb = sizeb
We already know what the relationship looks like for our four mammals:

To do that, we are going to explore the shape of the power function for three different ranges of "b": when b is greater than 1, between 0 and 1, and less than one. We are going to show you how the graph of the function looks, determine what it suggests about the relationship of size with metabolic rate. We'll use the graph above as a guide, but while we do that, lets keep in mind that the above graph only represents four mammals - and may not be typical - so while we explore the behavior of the function as we change the value of "b", lets keep an eye out for which values of "b" seem to be biologically plausible for the metabolic rate - size relationship. 

Below, we show for each of our three ranges of "b", a verbal description of what it means for "b" to be within each range, what the function looks like, describe what it means biologically, then decide if it is plausible to believe that "b" would take on that value. Remember, since "b" is an exponent (Metabolic Rate = Sizeb), we are really exploring the behavior of exponents! 
	b > 1 
	0 < b ≤ 1 
	 b ≤ 0 

	 What happens when you raise a number to a value greater than 1? What happens if you square a number, or raise it to the power of 5 or 10? The resulting value gets bigger and bigger at a faster and faster rate. 
	 When you raise a number to the power of 1, then its equal to itself (and therefore is linear). When its less than 1 you are effectively taking a "root" of the number (so X1/2 is the same as the square root of X). 
	 When you raise a number to the power of zero, the resulting number = 1. When you raise a number to a negative exponent, its equivalent to that same number raised in the denominator (so, X- b is equivalent to 1/ Xb). 
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	 So, if "b" is greater than 1, that means that as size increased, metabolic rate would also increase, but faster and faster. For example, if you compared the metabolic rates of an Indian elephant to an African elephant (who is just a little bigger), that you would see a massive increase in metabolic rate. That doesn't make any sense! 
	 When b is equal to 1, then size increases linearly with metabolic rate. When b is less than 1, it means that as size increases, metabolic rate also increases, but it increases more and more slowly as organisms get bigger and bigger. Hey! That looks looks like the relationship for our mammal graph (see above). 
	 Neither of these make any sense at all! If "b" is equal to 0, then metabolic rate is always 1. Clearly preposterous! If "b" is negative, then as organisms get larger, their metabolic rate gets closer and closer (but never reaches) 0. Another ridiculous pattern! 

	VERDICT: NO WAY! 
	 VERDICT: These makes sense biologically! 
	 VERDICT: NO WAY! 


Oh - a bit of vocabulary. When b = 1, then the relationship remains consistent over all size classes. This is called an "isometric" relationship. If the relationship changes across size classes (so b ≠ 1), it is called "allometric". That's why scaling studies are often referred to as the field of "allometry". Although (for whatever reason), when people refer to the field of allometry, they are usually referring to studies of form (i.e., how do the shape of bones change as dinosaurs get bigger?) rather than studies of physiology (i.e., how does heart or metabolic rate change as mammals get bigger?). 

So, we now know that the value of "b" is between 0 and 1 for our mammal example. We later will show that this is true for all organisms and we will spend a lot of time exploring the exact value of "b" and what it means biologically. But first, even though we have just spent all this time exploring the behavior of the power function, which is the function that is almost always used when studying scaling relationships. It turns out there is a little twist to the story - data for scaling studies are pretty much always displayed and analyzed after the data have been log- transformed. So we are going to spend some time explaining what this means, why it is done, and orienting you to being able to interpret the graphs and results.

The log transformation 

Data for scaling studies are almost always displayed and analyzed using log-transformed data. We are going to show you why and how - and make sure you are comfortable looking at these kinds of data and graphs. To do this, we are going to use our full data set of 600 mammals, and you will see why it is easier to see and analyze patterns in the data. In fact, you can see it just by looking at this picture! 
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What are logarithms again?

First, lets all just remind ourselves what a logarithm is (those who remember their logs well can skip to the next page!). The logarithm of a number is the exponent you raise above 10 to get that number. This is best seen by examples. 


log(100) = 2 (why? because 102 = 100)


log(10,000) = 4 (why? because 104 = 10,000)

An easy rule that works for multiples of 10 is that the log is equal to the number of zeros trailing the one (go ahead and count the zeros!):


log (10,000,000) = 7 


log (1,000,000,000,000) = 12

These multiples of 10 are always easy, but you can take the log of any number (in this case, we suggest you use your calculator- just type in the number, then hit the "log" button).


log(3,462) = 3.539327 (why? because 103.539327 = 3,462) 

Logs can also be figured for numbers less than one. When a number is a fraction (less than one), then the log is always negative. 


log(0.01) = -2 (why? because 10-2 = 0.01)

Why does this work? Because 10-2 is the same as 1/102, which equals 1/100, which equals 0.01!


log(0.0001) = -4 (why? because 10-4 = 1/104 = 1/10,000 = 0.0001)

An easy rule that works for decimals that are multiples of 0.1 is that the log is equal to the number of zeros trailing the decimal plus the "1" (go ahead and count those zeros again!):


log (0.0000001) = -7


log (0.000000000001) = -12

Again, these multiples of 0.1 are always easy, but you can take the log of any positive decimal (but again, we suggest using your calculator!):


log(0.3462) = -0.4607 (why? because 10-0.4607 = 0.3462) 

What happens if you take the log of zero? Well, how many times would you have to multiply 10 by itself to get zero? Well, if you think about it, there is no amount of times you can multiply 10 by itself and get zero! That means that the quantity log (0) is undefined (go ahead and try it on your calculator!). This is true also for negative numbers. Since you are always starting with a positive number (10) - and always multiplying by a positive number (10), you're just never going to get a negative number. So, give up your dreams of taking the log of a negative number - it just isn't going to work! 

Oh, one more thing about logs. You probably remember that you can take the log with bases other than 10 (so log2 is the exponent you would raise above 2 to get a particular number). But in this scaling module, we are always refering to logarithms of base 10 (hooray - because those are much easier to think about!).

Graphing on a log scale 

What happens when you graph on a log scale? Each increment of your axes increases by a factor of 10 (also called an order of magnitude) rather than by equal increments. What do we mean by this? 

Let's think about it in terms of our mammal data.

Our full data set lists the size and metabolic rate of 600 mammals that range in size from 2.5 grams (a shrew) to 325,000 grams (a moose). If we graph that on a normal scale, we might start with 0, then increase the scale in increments of 50,000 until we reach 350,000 (that would capture our entire shrew to moose range). Our axis would look like this:
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What happens if we change to a log scale. This time, instead of equal increments of 50,000, we are going to increase by an order of magnitude (a factor of 10) for each step along the axis:
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Notice how this drastically changes where the actual numbers occur - in the normal graph, the majority of the scale is taken up by the range between 50,000 and 350,000. In the log scale, these numbers occur in a very small section near the end. The log scale draws out the area where the smaller numbers occur. Look where the value "100,000" shows up along each scale:
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The above log-scaled axes still display the actual values of the weight. But log-scaled graphs are often portrayed with the values of the log labeled on the axis. For graphs with data displayed this way, just remember that each number represents the number of zeros after the "1" (when positive) or after the decimal point (if negative). Also, notice that the label specifies that the values are the log of the weight (rather than the weight itself).
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Displaying data in this way reminds us that the group of mammals we are considering spans six orders of magnitude in terms of their weight!

Visualizing the data 

Before we continue. Lets look at our graph of the full data set of 600 mammals, using a normal scale on both the x and y axes.
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Wait a second - didn't we say that there were data on 600 mammals??? There is no way that there are 600 points on that graph. Look at it! We can only see about, oh, we don't know, maybe 25 points!! Where did all the mammal data go?

Let's take a second and look at the axes. Both axes are displayed with a normal scale, meaning that each increment steps up an equal amount (increments of 100,000 grams on the x-axis). Let's think about the size of most mammals. Are most mammals small or big? How many different species of mice are there compared to, say, elephants? Like most organisms, there are lots and lots of species that are small and only a few that are big. In the case of our 600 mammals, about 95% are smaller than 15,000 grams. That means that the vast majority of our 600 data points are smashed into that first little segment of the graph.
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It's impossible to see whats going on! Now lets look at the same graph with both axes scaled by factors of 10 (in other words, on logarithmic axes):
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WOW! What a difference. There's still lots of points to look at - but they are now spread pretty evenly along both axes - so you can really see what's going on across all six orders of magnitude in size. What an improvement!

And there's one more thing to notice - now all the points fall across what looks like a very straight line. Why is that? Well, it turns out when you log-transform a power function, the resulting function is a straight line. Why would that be? That is what we are going to show you next.

The log-transformed power function is a straight line 

Why is it that when you log-transform a power function, you get a straight line? To show you, let's remember one of the most fundamental rules of algebra: you can do anything you want to one side of an equation - as long as you do the exact same thing to the other side (We just LOVE that rule!). So, what are we going to do?? Take the log of both sides of our equation:
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What were those rules of logs again? There are three, but the two that apply to this situation are:


log rule #1: log(a*b) = log(a) + log(b)


log rule #2: log(ab) = b*log(a)

OK, we know you are dying to remember log rule #3, so here it is: log (a/b) = log (a) - log (b) (but you don't need it here) 

Lets first apply log rule#1 to our equation:
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Now, lets apply log rule#2 to our equation:
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Now, for fun, I'm going to switch around the equation, just a bit - and now it looks just like the equation of a straight line:
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Of course Y = bX + a is just like Y = mX + b (with different letters for the parameters) - and just like we promised - the log-transformed power function (Y=aXb) becomes a straight line (Y=bX + a). It turns out this is a real advantage - because not only is it easier to visualize the data, but it is MUCH easier to work with linear vs. non-linear functions when doing statistical analyses. You'll just have to take our word on that one. So, we're very happy that now we are working with a linear function - but how does this affect the meaning of our parameters we just spent all that time figuring out?

The key scaling parameter is still "b" 

So, a brief reminder:

Our original power function: Y = aXb
And the log-transformed linear equivalent: log(Y) = b*log(X) + log(a) 

Now, the "b" and "a" play a different role in affecting the shape of the function. In this linear form, the "b" is the slope of the line, and log(a) is where the line crosses the y-axis (the y-intercept). But what about their biological meaning? That's what we really care about, after all. 

In the orginal power function, "a" was the a conversion factor that didn't mean very much biologically and "b" was the scaling factor that related how the relationship between size and metabolic rate changed at different sizes (so "b" was the parameter we were really interested in). If you need a reminder about this, you may want to take a few minutes and review the first section of this module.

So, what role do the parameters "a" and "b" play in the log-transformed function? Luckily, it turns out they mean the same thing. The parameter "a" is a conversion factor (that we aren't really interested in) - and "b" is the value that relates how size and metabolic rate change across different sizes. The value of "b" is equivalent whether you are using the power function or the log-transformed original, and therefore should be interpreted the same way. Just as we determined earlier, "b" will be a value between 0 and 1. 

It may be confusing that with the original power function, when b=1 (and the relationship was therefore linear), it meant that scaling was consistent across all size classes (and the relationship was isometric, and therefore boring), but that isn't true here even though the log-transformed function is always linear. That's because even though the function is linear, the relationship isn't, because the axes are now logarithmic (so the change in rate comes from the values being scaled logarithmically). OK? 

Now that we are comfortable looking at our log-transformed graphs and understand the interpretation of our most important parameter, "b" - we are going to spend some time thinking about the exact value of little "b". What do we think that value should be? What is the actual value of little "b" ? And what does it all tell us about the relationship between size and metabolic rate?

What should the value of "b" be? 

What is the real, underlying purpose for these kinds of scaling studies? The main driver is to learn something about the underlying biology of organisms. Any factor that that scales across a whole group or several groups of organisms in a consistent way is likely to teach us something pretty fundamental about biology! Therefore, the specific value of "b" could potentially lead us to uncover some general truths about the critical factors that drive metabolism across all species. Wow! So much potential information, just by figuring out the value of a parameter in a model! 

The best way to do this is to think about what processes would lead to certain values of key parameters - and then if we measure that value using real data, we can test which hypothesis is most likely to be true. All the way back to the 1800s, people thought that body size should scale with metabolism to the ⅔ power. We will describe the rationale, which is based on heat loss and geometry. Then, in the following section, we'll see what happened when people started empirically testing this prediction.

A geometric approach to a biological problem

All the way back to the 1800's, people suspected that the scaling of size and metabolism is going to be related to the amount of heat loss experienced by an organism (since all organisms require heat to carry out their metabolic processes) and therefore metabolic rate is going to be related to how organisms lose heat as they get larger. 

So now we are interested in two quantities, size and heat loss, both of which can be related to geometry.

The first we've already talked about - size. Of course, there are many ways to measure size, but in scaling studies weight is the most common because it captures size increases in all three dimensions. For instance, if we used only height to measure increases in size, then we may not be taking into account organisms that get bigger by getting wider. Weight is directly related to volume, and volume captures growth in all three dimensions. So, for size, we are interested in volumetric growth.

What about heat loss? How do organisms lose heat? Where do you lose heat? Through your skin of course! Since your skin covers the surface of your body, this becomes an issue of surface area, another geometric concept. So, in order to come up with a specific prediction of how size may scale with metabolic rate (if this relationship is driven by heat loss), we need to determine how surface area scales with volume. 

The critical question is, if you double or triple the linear dimensions of an object, do you double (or triple) its surface area and volume also? Would the ratios of volume to surface area or volume to length remain constant? Lets start by imagining a very simple organism that is shaped like a cube. As these cube-like organisms became larger, how much surface are (skin) would they have relative to their total body size? 

To answer these questions, imagine that you could build the three cubes illustrated below using sugar cubes 1 cm on a side. The first figure is a single sugar cube, the second consists of 8 sugar cubes, and the third is assembled from 27 sugar cubes.
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To think about this problem, take out a scrap of paper (and get out your calculator!) - and determine the following quantities:

	 
	small cube 
	medium cube 
	large cube 

	 length (cm) 
	1cm
	2cm
	3cm

	 surface area (cm2) 
	 
	 
	 

	 volume (cm3) 
	 
	 
	 

	 surface area/volume ratio 
	
	 
	 


The best way to compute the surface area, is to first determine the surface area of one face of the cube. What is that quantity? You probably remember that area of a square is length2. Since each cube has six faces, then the surface area of the entire cube is going to be equal to 6*(length2).

For the volume, just count the number of individual cubes that makes up each of the larger cubes, and remember that the volume of each little cube is 1cm3 (1cm x 1cm x 1cm). After you have filled in the surface area and volume rows, calculate the surface area to volume ratio. What happens to the surface area to volume ratio as the cube gets larger?

The scaling of surface area to volume

OK, so surface area to volume ratios decrease with increasing size (at least for our cube creatures): 

	 
	small cube 
	medium cube 
	large cube 

	 length (cm) 
	1cm
	2cm
	3cm

	 surface area (cm2) 
	6
	24
	54

	 volume (cm3) 
	1
	8
	27

	 surface area/volume ratio 
	6
	3
	2


To figure out how surface area scales to volume, we use our same, familiar power function:


Y = aXb only this time, our specific equation is:


Surface Area = a* Volumeb
Then we plot the relationship:

To determine the values of "a" and "b", we "fit" the data to our equations: 

(we're not going to go into the mathematics right now of how these equations are "fit", but will save that for another module!) 

We went ahead and fit the functions for both the normal and log-transformed data - and you can see that the computed value for the parameter "b" is the same for both!

	Power function 
	Log-transformed function 

	Y = aXb
	log(Y) = b*log(X) + log(a)
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COOL! Surface area scales to volume to the ⅔ power!

Cubes, spheres and the shape of all things 

So, using both normal and log-transformed data, we find that, when measuring cubes, surface area scales to volume with a 2/3 power rule. 

OK, OK, we know what you're thinking. That's fine for cubes, but most organisms aren't shaped like cubes! In fact, the only organism we could think of that is shaped rather cube-like is Spongebob Squarepants!

We'd like to believe that this relationship extends beyond the world of Spongebob - so do we have to figure out how each organism is shaped, then figure out the specific surface to volume ratio? That sounds like a lot of work! Last time we checked, there were already 1.4 million species described with up to another 30 million to go! How the heck are we going to figure out all those geometric relationships!?!
Hopefully, there is some consistency in how surface area to volume scales for different shapes. Let's try another shape. How about the scaling relationship as a sphere increases in size (from 1 to 2 to 3 cm in radius).
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Let's do the same thing we did with the cube, figure out the surface area and volume of each of these three spheres, then figure out the values of the parameters "b" and "a". We won't ask you to figure these quantities out, since only the mathiest of math-geeks would remember the formulas for the surface area and volume of a sphere (but here they are just in case you want to memorize them): 


surface area = 4πr2

volume = (4/3)πr3
So here are the values for the three spheres: 

	 
	small sphere 
	medium sphere 
	large sphere 

	radius (cm) 
	1cm
	2cm
	3cm

	 surface area (cm2) 
	12.57 
	50.27 
	113.1 

	 volume (cm3) 
	4.19 
	33.51 
	113.1 

	 surface area/volume ratio 
	3 
	1.5 
	1 


Notice that, as with cubes, surface area to volume decreases as the size of the sphere increases. But, more importantly, how do you think that surface area will scale to volume for spheres?

Spheres scale at 2/3 also 

Wow! It turns out that when you fit the data for this relationship, the value of "a" is different, but the value of "b" has the same value for spheres and cubes: ⅔ 

Here again are the data for spheres using both the normal power function and the log-transformed function:!

	Power function 
	Log-transformed function 

	Y = aXb
	log(Y) = b*log(X) + log(a)
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COOL! Surface area scales to volume to the ⅔ power! 

And it turns out, this is true for any shape with a smooth surface. While the value of "a" varies from shape to shape (you can even figure out the value for each geometric shape if you want to!), the value for "b" remains constant at ⅔. This makes sense if you think about it - because surface area and volume are both calculated from a measurement of length, but surface area is always proportional to length squared while volume is always proportional to length cubed. Since we are dividing surface area (calculated from a squared quantity) by volume (calculated from a cubed quanitity) - we always end up with a ⅔ power relationship, no matter the shape. 

Now we understand the mathematics behind why people thought that metabolic rate and metabolism would scale with a ⅔ power relationship. They thought it was related to how volume and surface area grew at different rates as organisms got larger. In the next section, you will see what happens when people began measuring the value of "b" - they got an unexpected result - that metabolism scaled with body size with a 3/4 power relationship. And that led to some new theories about what biological processes were limiting metabolic rates.

Confronting ideas with data 

In this section, we explore the very current controversy about the nature of the scaling relationship between body size and metabolism. In one corner, we have a group that has offered a rather complicated explanation about why there is a 3/4 power relationship. In the other corner, we have a group that says you still can't rule out the 2/3 power relationship.

Warning: there are no answers at the end of this section - because this controversy is still an active one (and probably will be for a long time). However, its impossible to even begin to understand the controversy without understanding the math behind it all. So we hope that you come away from this module with that basic understanding.

An unexpected result 

So, what did scientists actually find when they went out to measure the parameter "b"? How does body size scale with metabolism? The most famous early paper was published by Max Kleiber in 1947 and showed a surprising result. Body size seemed to scale with metabolism to the 3/4 power, rather than the 2/3 that was expected! This 3/4 power law became known as Kleiber's law. Here is his original graph:
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Notice that the data are displayed on a log-scaled graph (of course!). The green points are the data, and they overlie the red line, which shows the 3/4 scaling relationship. The dotted line labeled "surface" indicates the line with a slope of 2/3 and the dash-dot line labeled "weight" indicates the slope if b = 1 (in other words, if the relationship were linear). These data are for mammals only, but further investigation found that this relationship was consistent for several groups over an unbelievable 21 orders of magnitude (from single-celled organisms all the way to elephants).
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This 3/4 scaling pattern caused a great deal of confusion. What process was governing this strange result? Scientists struggled with it for years, and it wasn't until 1997 that a credible model was proposed.

The origin of the 3/4 scaling law 

Although other theories were put forward, it wasn't until 1997, that James Brown (not the singer!), Geoffrey West and Brian Enquist suggested a universal origin of this scaling law. Although their theory is complicated, it is attractive in that it not only explaines the 3/4 power law of metabolism and body size, but also many other body size - physiology scaling patterns that seemed to all be even multiples of 1/4. 

For instance, in mammals, life span scales to body weight with a 1/4 power law and heart beats per minute scales to body weight with a negative 1/4 power law. The interesting result of these two opposing values is that, no matter how large a mammal is - mouse or elephant - or how long they live - 1 year or 100 years - all mammals have, on average, the same number of heartbeats over their lifetime. How cool is that!?!

But back to their idea. It is still rooted in the concept that surface area and volume are critical concepts. But this time, instead of the surface area and volume of the entire organism - they focused on the surface area and volume of the networks that transport nutrients and materials throughout an organism's bodies - and are, of course, the machinery of metabolism. Again, the theory is very complex, so as you are reading the next few pages, keep in mind that what we really want you to understand about this theory is the following main ideas:

· The focus is still on geometry, only it is the geometry of internal transport networks 

· Brown and his colleagues laid out several important assumptions upon which their theory relies 

· Brown and his colleagues used mathematical reasoning (largely through algebraic manipulations) to arrive at the 3/4 power law. 

So let's start with the first point, what do they mean by internal transport networks? 

These networks include the circulatory system and xylem and phloem in plants. Other examples include the respiratory system and the tracheal system in invertebrates. Then, they made three critical assumptions about these transport networks. We'll show you those next. 

Three assumptions about internal transport systems 

Brown et al. (our fancy, scientific way of saying Brown and his colleagues) first outline three fundamental assumptions that underlie their theory. Almost all theories have basic assumptions that scientists detail and hope you will accept. It is always our job as critical thinkers to examine the assumptions of someone's theory. If we don't buy the assumptions, we may want to reject the theory (but then again, we may not).

So, the first three fundamental assumptions of Brown et al.'s theory: 

1) Organisms have evolved to minimize the energy necessary to transport materials throughout their bodies. 

OK - that makes perfectly good sense!

2) In order to supply the entire volume of an organism, it is necessary to have a network of tubes in a hierarchical branching pattern, and they claim that the branching pattern is a self-similar fractal. 

Whoaa - what the heck does that mean??? 

Let's start with the idea of a network of tubes that branches in a hierarchical fashion. Think about it in terms of the circulatory system - the first, largest branch is the aorta - then that splits into several smaller branches, each of which splits into several smaller branches - and each of those splits into several smaller branches - and so on, and so on, and so on - until you reach the final branching level - the capillaries!
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These capillaries have to supply every last millimeter of tissue in each organism. So, as you can imagine, there are a lot of branches - and those capillaries reach out and fill the entire volume of the organism (so of course the branching pattern is much more complex than that shown above). 

So, what does it mean that the network is a self-similar fractal? In this case, it means that every time the system branches - it branches an equal number of times. So if the aorta branches four times, then each of those branches will branch four times - then each of those branches will branch four times, and so on, and so on, until you get to the final level - the capillaries (so the picture above does not show a self-similar branching pattern). 

And their final, basic assumption:

3) That the final branch of the network, where nutrients and materials are actually exchanged is size-invariant. 

So, what does that mean?

Again, this is easiest to think of in terms of the blood circulatory system. For that case, it means that no matter how big an organism gets, that their capillary size is the same. This actually makes a lot of sense - because what limits the size of capillaries (and other material transport systems like lungs and trachea and xylem)? The limits of diffusion, of course! The materials must be able to diffuse efficiently - and as soon as the size of the tube becomes too large, diffusion is no longer efficient. Diffusion is going to occur at the same rate across all organisms! So, the largest allowable size of the capillaries is going to be the same, whether you're a mouse or a moose or an elephant or a whale! If the idea of the limits of diffusion doesn't sound at all familiar - please revisit our diffusion module that is still available for your reading pleasure! 

So, what do you think? Do you believe their assumptions? If so, great! If not, let's keep following their argument anyway. 

It is beyond the scope of this module to detail all their reasoning - but their theory is related in a more complex way to many of the concepts of volume and area that we covered earlier and how the ratios of these quantities are conserved from branch level to branch level. Although we won't detail the derivation of these relationships, we will show you how manipulating the equations they developed allowed them to arrive at their final conclusion: that the scaling exponent, "b", should be equal to 3/4.

The branching of the supply network 

So, here we are going to present some of the formulas that Brown et al. use to formalize their ideas (though we won't show you how they came up with each individual value) - and we'll show you how manipulating the equations allows you to independently predict that the value of "b" should be 3/4 for the size-metabolism relationship. 

If you are having trouble remembering your algebraic rules of equation manipulation - don't worry about it too much - we just want to show how the rules you learned about in math class are actually used in scientific reasoning (so try not to get too caught up in the details!). 

So it makes perfect sense that the main supplying branch of an organism's transport network is going to be larger in larger organisms (while the capillaries of elephants and mice are the same size, the aorta of an elephant is going to be much larger than that of a mouse - in fact, a mouse could fit inside an elephant's aorta!). But a critical idea from the Brown et al. model, is the amount of decrease in both the radius and length of each branch is similar between organisms. That means that it is also true that there are going to be many more branchings going from the aorta of an elephant to its capillaries, compared to the number of branchings going from the aorta of a mouse to its capillaries.

According to Brown et al. - it is more useful to think of the number of times the network branches (rather than the size of the main supplying branch), a value that they call big "N". They point out that this value "N", is going to be related to the size of an organism (this makes sense, the bigger an organism is, the more branching levels it will need). However, big "N" is also related to the number of times the network splits at each level (a value they call little "n"). This also makes sense, because the more times the network splits at each level, the more quickly you get to the smallest branch size.
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Brown et al. also recognize that this relationship may not scale linearly, so they added a scaling parameter (b). So, based on this reasoning, they formalized the relationship mathematically with the following equation: 
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And just to remind you: 

N = the total number of times the transport network branches from the top level (i.e., aorta) to the final level (i.e., capillary),

b = the scaling parameter, and

n = the number of times the network splits at each level (so each branch splits a consistent number of times (i.e., 2) as it moves down each level).

Of course - we are interested in the value of "b" - so, let's solve for "b"? How do we do that? We cross-multiply, of course!
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The derivation of the 3/4 scaling law 

So, our new formula for "b" is:
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Based on some of the principles above (and some we haven't presented yet) - the authors suggest that size (and by size, they really mean the volume of the transport network) is related to three main factors: 1) the number of times the network branches from the top level to the final level (N), 2) how the branches decrease in radius from level to level ( a value they call γ), and 3) how the branches decrease in length from level to level (a value they call β). They then show that size (volume) is proportional to the quantity (γβ2)-N. So using that information, we can do some further manipulations and come up with a new equation:
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Finally, the authors show us that γ is equal to n-1/3 and β is equal to n-1/2, so we can do one final manipulation:
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Whew!!!! We finally arrived at our final destination - that "b" should be equal to 3/4!!!

So, what is the real value of "b"? 

Brown et al. claim that they have come up with a convincing reason why "b" has been found to be equal to 3/4. A value that they claim has been demonstrated over many studies and throughout several decades. Their theory is certainly convoluted and hard to understand (and we spared you almost all of the really gory details!). But they do claim to be able to derive a whole host of scaling laws, all of which scale to multiples of 1/4 (like the heart beat and life span example given earlier), and that gives a lot of support to their argument. And there is no other convincing theory that explains the pattern!

Recently, however, several authors have shown that there is still a great deal of uncertainty about the real value of "b". Is it really 3/4 as so many studies seem to suggest? Or is it possible that it is actually 2/3, as everyone originally thought it would be? How easy is it to tell 3/4 from 2/3 anyway? I mean, if you think about it, they are not so far from each other: 2/3 is equal to 0.67 and 3/4 is equal to 0.75 - a mere separation of 0.08. Can we really distinguish those two slopes? 

Let's take a look at all our mammal data, using a fit scaled to both a 3/4 and 2/3 rule - what do we see?
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As you can see, these two lines are very close to each other. And statistical analysis of these kinds of data is very tricky - there is a lot of uncertainty in the parameter estimates - and recent publications in leading journals suggest that we can't really say whether the real scaling exponent is 2/3 or 3/4. But there are certainly many scientists convinced of the 3/4 scaling rule. Are they right or wrong? How can you tell?

Although we all like easy answers sometimes, these kinds of controversies are what drives science forward. And the introduction of Brown et al.'s theory has restimulated this area of study. As time goes on, their reasoning will be reexamined, more data will be brought to bear - and the scientific community will likely come to some sort of a consensus (we hope!). We'll just have to wait and see.

Review of Concepts 

So, before taking the quiz that follows, we will review the main concepts presented in the module (we want you to get 100%!). 

· Scaling relationships in biology describe how form or function change as organisms get larger. By using a power function (Y = aXb), we can determine if the relationship is isometric (scales linearly) or allometric (one factor changes at a different rate than the other). Our entire module focused on the relationship between metabolic rate and body size - one of the most well-studied scaling relationships there is! 

· For this relationship, the only biologically plausible range for the power parameter "b" is greater than zero and less than or equal to 1. That is because it doesn't make sense that metabolic rate would show large increases for very small increases of body size (as would be the case if b>1), or that metabolic rate would approach zero as organisms get larger (as would be the case if b<0). 

· Most scaling studies present and analyze log-transformed data. This is because the data are easier to visualize (the logarithmic scale draws out the values at the smaller end of the scale). Also, log-transforming a power function (Y = aXb) results in a linear function: log(Y) = b*log(X) + log(a). And linear functions are much easier to work with statistically! 

· For more than a century, people hypothesized that the relationship between metabolic rate and body size would scale with a 2/3 power rule. That's because they believed that metabolism was limited by surface area to volume ratios that related how heat is lost through the skin (measured in surface area) relative to the weight of the body (measured in volume). For all shapes, surface area to volume scales at a 2/3 power rule. 

· When people actually measured the relationship, they found the surprising result that metabolism actually scales to body weight with a 3/4 power rule. This led to a new (and very complicated) theory that relates the geometry of the internal transport systems (i.e., circulatory, respiratory, tracheal, xylem) to the limits on metabolic rate. This new theory is controversial, and now people are even questioning the actual value of the scaling relationship (is "b" equal to 2/3 or 3/4). The controversy remains to be worked out. How exciting!
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